当前位置:首页 > 教育范文 > 教学计划

数学教学计划

时间:2025-08-03 15:14:30
精选数学教学计划6篇

精选数学教学计划6篇

日子在弹指一挥间就毫无声息的流逝,我们又将在努力中收获成长,立即行动起来写一份教学计划吧。相信大家又在为写教学计划犯愁了吧,以下是小编整理的数学教学计划6篇,希望对大家有所帮助。

数学教学计划 篇1

一、学情分析

部分学生能正确认识到数学学习的重要性,能按正确学习方法学数学,平时能遵守课堂常规,认真完成作业;少数学生学习习惯、学习态度不太好,课堂上不能专心致志,注意力会分散、思想开小差,学习目的性不够明确,也不能保持最基本的纪律;个别学生在课堂上不愿开口,发言不积极。所以,学生良好学习行为习惯的培养和有效开展课堂讨论和提高学习效果将是本学期要工作努力的方向。

从上学期考试成绩分析,学生的基础的知识、概念、定义掌握比较牢固,口算、笔算验算及脱式计算基本掌握,少数学生粗心大意,灵活性不够,应用能力不够强。部分学生接受能力较强,学习态度较端正;也有部分学生自觉性不够,不能及时完成作业等,对于学习数

学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。 少数学生自觉性不够,缺乏刻苦钻研的精神,总想偷懒,作业马虎。今后首先还是加强学习习惯培养,如学前的自习、课后的复习等。在书写上还要继续提高要求,只有让学生在认真书写的基础上才有可能认真思考。其次,这学期整数的计算(简便计算)占了极大一块内容,所以培养他们的计算能力是关键。另外培养解决实际问题的能力也是本学期的重点,在教学中加强数学数量关系的分析,让学生学会分析,学会审题,提高解题能力。最后在激发学生学习兴趣方面多寻找方法,使他们乐学,愿学,努力提高他们的学习成绩。

二、教材分析

这一册教材包括下面一些内容:平移、旋转和轴对称、认识多位数、三位数乘两位数、用计算器计算、解决问题的策略、运算律、三角形、平行四边形和梯形、确定位置、整理和复习等内容。

本册教材主要特点:本册教材具有内容丰富、关注学生的已有经验与生活体验、体现知识的形成过程、鼓励算法多样化、改变学生的学习方式,体现开放性、灵活性的教学方法等特点。教材努力体现新的教学观念和学习观念,具有创新、实用、开放的特点。本教材既注意体现教育新理念,又注意继承传统的数学教育内涵,使我们的实验教材具有基础性、丰富性和发展性。

在数与计算方面,这一册教材安排了认识多位数,三位数乘两位数,用计算器计算和运算律。

本册这些知识的学习,一方面使学生学会用较大的数进行表达和交流,掌握较大数范围内的计算技能,进一步发展数感;另一方面通过十进制计数法的学习,对有关数概念的各方面知识进行系统的整理和融会贯通,为学生形成科学、合理的数学认知结构奠定基础;并为进一步学习小数、分数及小数、分数的四则运算做好铺垫。

在空间与图形方面,这一册教材安排了平移、旋转和轴对称、三角形、平行四边形和梯形和确定位置三个单元,这些都是本册的重点教学内容。

在解决问题方面:一方面在现实情景中提出与数学有关的问题,运用掌握的知识或规律解决问题。另一方面能发现并提出简单的数学问题,能探索出解决问题的有效方法,能有效地与同伴合作,在教师的指导下,进一步提高数学表达水平,进一步学习反思评价,感受数学的魅力。

本册教材根据学生所学习的数学知识和生活经验,安排了应用数学的综合应用──“★多边形的内角和”、“●一亿有多大”和“●数字与信息”,让学生通过小组合作的探究活动或有现实背景的调查了解活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。

【教学重点】:认识多位数、三位数乘两位数、运算律、解决问题的策略、三角形、平行四边形和梯形的认识。

【教学难点】:三角形、平行四边形和梯形的认识。

三、教学目标

1.知识与技能方面

(1)使学生联系已有的知识和经验,经历从具体问题中抽象数量关系,并探索算法和运算律的过程,掌握有关的计算方法和运算顺序,发现并初步理解一些简单的运算规律;初步认识自然数的一些特征;初步理解用字母表示数的意义和基本方法。

(2)使学生经历探索一些常见平面图形的特征以及简单变换的过程,认识三角形、平行四边形和梯形及其特征,了解图形的对称和图形位置关系的简单变换。

2.数学思考方面

(1)在探索计算方法、发现运算规律的过程中,开展类比、猜想、归纳、验证等活动,发展合情推理能力。

(2)在探索自然数的一些特征,学习用字母表示数的过程中,进行观察、比较、分析、综合,进一步发展抽象思维,增强符号感。

(3)在探索平面图形的特征、对图形进行简单变换以及设计图案的过程中,进一步发展形象思维和空间观念。

3.解决问题方面

(1)能从现实情境中发现并提出一些简单的数学问题,并能运用所学的数学知识和方法解决问题,进一步发展应用意识。

(2)能在解决问题的过程中,合理使用计算器进行计算,初步学会用画图的策略整理和表达信息,探索解决问题的有效方法。

(3)在解决问题的过程中,进一步积累解决问题的策略,体会解决问题策略的多样性,逐步增强对解决问题过程的反思意识。

4.情感与态度方面

(1)在探索和发现数学知识、规律的过程中,进一步获得成功的体验,产生对数学事实和数学内在联系的好奇心,树立学好数学的自信心。

(2)在理解数学内容以及运用数学知识、方法解决简单实际问题的过程中,进一步体验数学与生活的密切联系,感受数学的价值与作用。

(3)能努力克服数学学习中遇到的困难;热心参与数学问题的讨论;发现错误能主动改正。

(4)能主动、认真地阅读一些数学背景资料,感受数学在社会发展中的作用,进一步形成对数学的积极情感。

四、教学措施

1.以学生的发展为本,用活新教材,深入开发例题资源,充分挖掘问题资源,合理利用习题资源。

2.紧密结合现实环境,努力创设现实情境,认真组织数学活动,使学生体验和理解数学。

3.让学生在具体的操作活动中开展观察、猜想、推理、交流等活动,鼓励学生发表自己的意见,并与同伴进行交流,愿意并学会合作。

4.优化教学策略,采取各种生动活泼的形式激发学生的兴趣,让学生在轻松愉快的气氛中学好数学。

5.充分利用学生已有的生活经验,引导学生把所学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性,提高学习积极性。

6.正确认识学生个体差异,因材施教,使每个学生都在原有基础上得到发展,让学生获得成功的经验,树立学好数学的 ……此处隐藏8079个字……在学习活动中的情感和态度表现

给学生足够的活动空间,认真实施分层教学

第八章灵活运用代入法或加减法解简单的二元一次方程组

会列出二元一次方程组解简单应用题,并能分析结果

理解解方程组“消元”的思想,领会“转化”的思想

妥善处理学生“主体”与教师“主导”的关系

突出解二元一次方程组通法的教学

加强学生之间的合作学习

注意教材弹性

数学教学计划 篇6

本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。

I这是指数函数在本章的位置。

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。

Ⅱ.教学目标设置

1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。

2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。

3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。

4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。

Ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生。

1。学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。

2。达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。

3。难点及突破策略

难点:1。 对研究函数的一般方法的认识。

2。 自主选择底数不当导致归纳所得结论片面。

突破策略:

1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。

2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。

3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。

Ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。

(3)性质应用阶段,学生自主举例说明指数函数性质的应用。

研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。

Ⅴ.教学过程设计

1。创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。

[教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。

Ⅵ.教后反思回顾

一、对于指数函数概念的认识

指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。

二、对于培养学生思维习惯的考虑

在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。

三、关于设计定位的反思

本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。

《精选数学教学计划6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式